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1. Introduction

Summary
ICancerous tissue and healthy tissue have very a different vascular morphology
IWe present a method to discriminate tissue by studying photoacoustic signal

characteristics from different vascular geometries
IA simulator for generating photoacoustic signals from large vascular trees is developed

Motivation

IPhotoacoustic systems are capable of resolving high-resolution micro-vascular structures
smaller than 10µm, but such data-acquisition may be time-consuming and expensive

IThere is a need to quickly discriminate between normal and abnormal tissues for use in
cancer detection at clinically relevant ultrasound frequencies

2. Normal and Abnormal Micro-vasculature

Normal vascular tissue has a regular branching structure whereas abnormal tissue has a
highly erratic branching structure

Normal Vasculature Abnormal Vasculature (Melanoma)
Micro-vascular images of mouse skin

3D datasets are obtained using Optical Coherence Tomography (OCT). Courtesy of A. Vitkin and A. Mariampillai, Princess Margaret Hospital, Toronto, Canada.

3. Model of Vascular Morphology

Fractal trees are use to model vascular tissue

Normal Tissue Model Abnormal Tissue Model

IBranching angles are based on values published in the literature
IEach vessel is a finite-length cylindrical photoacoustic source

4. Photoacoustic Wave Propagation

Our model is governed by the photoacoustic wave equation assuming short homogeneous
excitation and constant speed of sound(
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c Speed of sound
β Isobaric thermal expansion
Cp Specific heat capacity
H(x) Deposited optical energy
p(x, t) Acoustic pressure
p0(x) Initial pressure distribution
δ(t) Dirac impulse function

5. Validation
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(a) FEM and Exact Solutions
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(b) Simulator

IFor validation, waveforms for a single
cylindrical source are compared against a
finite-element and an exact solution

6. Simulation

IPhotoacoustic simulation is performed
on large vascular tree models

ISimulation on actual 3D micro-vascular
geometry is also performed

7. Number of Transducer Locations
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(i) original

When fewer transducers are used, the ability to resolve small structures is reduced.

8. Feature Extraction

IWavelet Packet Decomposition (WPD) is performed
on each transducer A-line signal

IA Feature Vector is created from the WPD
coefficients

IThe Support Vector Machine (SVM) algorithm is
used to train a classifier from a many sets of feature
vectors

9. Classification Algorithm

IThe classification algorithm consists of a training phase and a testing phase
I In the testing phase, the classifier that was learned during the training phase is used to

discriminate between tissue

10. Results

IThe performance is measured for several different Signal-to-Noise (SNR) ratios on
simulated datasets

SNR TN FP FN TP Sensitivity Selectivity
Original 22 6 1 27 96.4% 78.6%
+30 dB 24 4 1 27 96.4% 85.7%
+10 dB 25 3 11 17 60.7% 89.2%

+3 dB 0 28 0 28 100% 0%
-3 dB 0 28 0 28 100% 0%

Sensitivity =
True Positives

True Positives + False Negatives

Specificity =
True Negatives

True Negatives + False Positives

11. Conclusion

IBased on simulations, we have demonstrated using wavelet-packet features to
discriminate between normal and abnormal vascular tissue

IThe structural morphology of vasculature appears to have a direct effect on photoacoustic
signal characteristics

IThe approach can be used when vascular structures cannot be resolved
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