

MAESTRO TRIAL – FINAL RESULTS

Gisela L.G. Menezes, MD, PhD

Angiogenesis

How does OA work?

Malignant

Benign

How does OA work?

0

D

How does OA work?

Optoacoustic Imaging

MAESTRO - Primary Objectives

- To assess OA/US's ability to correctly downgrade benign masses classified as BI-RADS 4a and 4b to BI-RADS 3 or 2.
- Sensitivity, specificity, PPV, NPV, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) of CDU and OA/US.

Why BI-RADS 4a and 4b?

Category	Definition	Probability of Malignancy
0	Needs additional imaging evaluation	NA
1	Normal mammography – back to screening program	0%
2	Benign findings – back to screening program	0%
3	Probably benign – 6-month interval follow-up	≤ 2%
4	Suspicious abnormality – tissue diagnosis (biopsy)	 4a, Low POM (>2% to ≤ 10%) 4b, Moderate POM (>10% to ≤ 50%) 4c, High POM (> 50% to < 95%)
5	Highly suggestive of malignancy – tissue diagnosis (biopsy)	≥ 95%
6	Known biopsy-proven malignancy	NA

Study Design

• Prospective, multicenter, and observational study.

 Based on images obtained with OA/US, investigators estimated the probability of malignancy (POM) on a scale from 0% to 100% and, when appropriate, adjusted the BI-RADS classification.

Study Design

- Five OA features were scored (downgrade or upgrade the lesion classification).
- 140 benign and 70 malignant masses were projected.
- Power>80% (2% Type I error).
- Sensitivity and specificity for CDU and OA were calculated. PLR and NLR were also calculated.

Results: BI-RADS classification of benign lesions according to CDU and OA (n=146)

	CDU BI-RADS	
OA BI-RADS	4a (N=119)	4b (N=27)
2	8 (6.7%)	0
3	49 (41.2%)	3 (11.1%)
4a	44 (37.0%)	3 (11.1%)
4b	18 (15.1%)	11 (40.7%)
4c	0	9 (33.3%)
5	0	1 (3.7%)
Downgrade CDU BI-RADs (4a, 4b) to OA BI-RADs (2, 3):		
Downgrade [n/N (%)]	60/146 (41.1%)	
96% CI	(32.7, 49.4)	
P-value [null hypothesis is ≤ 15%]	< 0.0001	

Results: BI-RADS classification of malignant lesions according to CDU and OA (n=67)

	CDU BI-RADS	
OA BI-RADS	4a (N=7)	4b (N=60)
2	1 (14.3%)	0
3	1 (14.3%)	1 (1.7%)
4a	4 (57.1%)	6 (10.0%)
4b	1 (14.3%)	21 (35.0%)
4c	0	30 (50.0%)
5	0	2 (3.3%)
Downgrade CDU BI-RADs (4a, 4b) to OA BI-RADs (2, 3):		
Downgrade [n/N (%)]	3/67 (4.5%)	
96% CI	(0.9, 13.0)	
p-value [null hypothesis is ≥ 10%]	0.0872	

Results

• CDU sensitivity =
$$\frac{TP}{TP+FN} = \frac{67}{67} = 100\%$$

• CDU Specificity
$$= \frac{TN}{TN+FP} = \frac{0}{146} = 0\%$$

• **OA sensitivity** =
$$\frac{TP}{TP+FN} = \frac{64}{67} = 95.5\%$$

• **OA Specificity**
$$= \frac{TN}{TN + FP} = \frac{60}{146} = 41.1\%$$

• OA without the estimator : PPV was 42.7% and NPV was 95.2%. PLR was 1.61 and NLR was 0.11

Discussion

- NLR of 0.11 post-test probability lower than the pre-test probability.
- BI-RADS 3 (benign) has a very low POM ($\leq 2\%$).
- The POM of BI-RADS 4a varies from >2% to \leq 10%.
- A NLR of 0.11 shows that a pre-test probability at the upper end of a 4a lesion (≈10%) can be reduced to a post-test probability of 1.1% by a negative OA examination, allowing the lesion to be downgraded from BI-RADS 4a to 3.

Discussion

- BI-RADS lexicon: Categories 1 or 2 are typically benign (virtually 0% chance of malignancy).
- In 8 cases benign masses were downgraded from BI-RADS 4a to BI-RADS 2.
- The lower end of BI-RADS 4a range (≈2%) can be reduced to a post-test probability of only 0.22%.
- The PPV of category 4b varies from from >10% to \leq 50%.
- Considering category 4b, a mass with a pre-test probability of 15.6% could be downgraded to BI-RADS 3 (2 categories downgrade). However, lesions with a higher probability of malignancy cannot be downgraded without increasing the FN rates.

Conclusions

• 41.1% of benign masses could be downgraded in BIRADS category using OA/US.

Conclusions

• 49.2% of malignant masses could be upgraded with OA/US.

Conclusions - Implications for patient care

- OA improves the distinction between benign and malignant masses compared to CDU alone.
- Benign masses classified as BI-RADS 4a can be downgraded to BI-RADS 3 or 2, potentially minimizing negative biopsies and short interval follow-up imaging exams.
- Potential to lower overall costs related to interventional procedures and short-interval follow-up imaging studies.
- Limitations: 3 false-negatives.

First false-negative mass: an IDC grade 1 which was downgraded from BI-RADS 4b to BI-RADS 2

Second false-negative mass: an IDC grade 3 which was downgraded from BI-RADS 4a to BI-RADS 2

Third false-negative mass: an ILC grade 2 (alveolar variant) which was downgraded from BI-RADS 4a to BI-RADS 3

Inclusion Criteria

- Females \geq 18 years.
- Have a suspicious finding classified by CDU as BI-RADS 4a or 4b.
- Have received recommendation for an image-guided biopsy.

Exclusion Criteria

• Has a condition that could interfere with the intended field of view (breast implants or tattoos).

• Prior surgery within the same quadrant as the mass to be biopsied.

 Have had prior excisional biopsy within the vicinity of the suspicious mass within the past 18 months.

Exclusion Criteria

- More than 3 masses recommended for biopsy.
- Mass to be biopsied is greater than 3.0 cm in maximum diameter.
- Patient currently has mastitis.
- Patient is pregnant or lactating or planning to become pregnant during study participation.

Likelihood Ratios

- Likelihood ratios are important to assess the value of performing a diagnostic test.
- $PLR = \frac{sensitivity}{1 specificity}$
- $NLR = \frac{1 sensitivity}{specificity}$
- The larger the PLR, the greater the likelihood of disease; the smaller the NLR, the lesser the likelihood of disease.
- These rates are less likely to change with the prevalence of the disorder.
- To use this measure a nomogram (estimators) should be employed or pre-test probabilities should be converted into Odds.

