Clinical feasibility of co-registered opto-acoustic and ultrasonic imaging for differentiation of breast tumors

Pamela Otto1, Kenneth Kist1, N. Carol Dornbluth1, Don Herzog2, Bryan Clingman2, Sergey Ermilov3, Vyacheslav Nadvoretskiy3, André Conjusteau3, Richard Su3 and Alexander Oraevsky2, 3

1University of Texas Health Science Center, San Antonio, Texas, USA
2Seno Medical Instruments, San Antonio, Texas, USA
3TomoWave Laboratories, Houston, Texas, USA
Principles of Opto-Acoustic Imaging

- Optical imaging provides high contrast BUT low resolution, and does not permit deep imaging.

- Ultrasound provides high resolution, BUT low contrast and provides neither quantitative molecular or functional images.

- **Solution**: Opto-acoustics (OA) provides high contrast with molecular specificity, quantitative information, and high resolution in the depth of tissue.
Optical Absorption as a Function of Laser Wavelength

Absorption Coefficient, μ_a (cm$^{-1}$)

Wavelength, nm

Absorption Coefficients for

- HbO$_2$
- Hb
- Lipids
- H$_2$O

Laser Wavelengths:

- 755 nm
- 930 nm
- 1064 nm

Graph shows absorption coefficients for different wavelengths and substances.
Image Contrast versus Depth

Optoacoustic Brightness versus Depth, mm

- 20 mm
- 40 mm
- 60 mm
- 80 mm

Noise floor
The Imagio™ System
— The Combination of OA and US —

Malignant tumor has increased blood concentration and decreased oxygenation

Benign growth has increased blood concentration and normal oxygenation

Short laser pulses

LASER 1

LASER 2
Co-registered US & OA Images
Fibroepithelial benign lesion (most likely a phyllodes tumor)

Red indicates deoxygenated hemoglobin

Imagio™ Ultrasound with Opto-acoustic Co-registration

CTRC Diagnostic Ultrasound Image

49 YO patient with new 6cm mass, superior at 1.4cm, inferior at 4.0cm, in right breast
Co-registered US & OA Images
Fibroepithelial benign lesion (most likely a phyllodes tumor)

Green indicates oxygenated hemoglobin

ImagioTM Ultrasound with Opto-acoustic Co-registration

CTRC Diagnostic Ultrasound Image

49 YO patient with new 6cm mass, superior at 1.4cm, inferior at 4.0cm, in right breast
Co-registered US & OA Images
Fibroepithelial benign lesion (most likely a phyllodes tumor)

Combined images reveals benign tumor

49 YO patient with new 6cm mass, superior at 1.4cm, inferior at 4.0cm, in right breast
Co-registered US & OA Images
Fibroepithelial benign lesion (most likely a phyllodes tumor)

Note peak oxygenated areas in benign tumor

Imagio™ Ultrasound with Opto-acoustic Co-registration

CTRC Diagnostic Ultrasound Image

49 YO patient with new 6cm mass, superior at 1.4cm, inferior at 4.0cm, in right breast
Co-registered US & OA Images

Invasive Ductal Carcinoma

46 YO patient with new 1.5cm mass, superior at 1.7cm, inferior at 3.2 cm, in left breast.
Co-registered US & OA Images

Invasive Ductal Carcinoma

Note peak de-oxygenated area in tumor indicates cancer

Imagio™ Ultrasound with Opto-acoustic [S02] Overlay

CTRC Diagnostic Ultrasound Image

46 YO patient with new 1.5cm mass, superior at 1.7cm, inferior at 3.2 cm, in left breast.
RESULTS

- 6 tumors identified by mammography and ultrasound as suspicious for malignancy; 3 were confirmed malignant by biopsy.
- 2 out of 3 histologically benign tumors were differentiated as benign with opto-acoustics.
- 3 of 3 carcinomas were correctly identified by opto-acoustics.

Opto-acoustics correctly diagnosed 5 of the 6 lesions.

CONCLUSION

- Opto-acoustic imaging provides additional diagnostic information based on angiogenesis and blood oxygen saturation.
- These data are being used to formulate a multi-center trial.
Acknowledgement

Dr. Martin Sandler, Radiology, Vanderbilt University