Opto-acoustic Image Fusion Technology for Diagnostic Breast Imaging in a Feasibility Study

SPIE Medical Imaging 2015, Orlando, Florida
February 22, 2015

Jason Zalev1, Bryan Clingman1, Don Herzog1, Tom Miller1, Michael Ulissey1, MD, A. Thomas Stavros1, \textit{MD}, Philip T. Lavin2, PhD, Alexander Oraevsky3, PhD, Kenneth Kist4, \textit{MD}, N. Carol Dornbluth4, \textit{MD}, Pamela Otto4, \textit{MD}

1. \textbf{Seno Medical Instruments}, San Antonio, TX, USA
2. Boston Biostatistics Research Foundation, Framingham MA, USA
3. TomoWave Laboratories, Houston, TX, USA
4. University of Texas Health Science Center, San Antonio, TX, USA
Feasibility Study Findings

- Feasibility Study showed preliminary evidence that fused opto-acoustic and ultrasonic images
 - improves specificity over that of conventional diagnostic ultrasound
 - can potentially reduce the number of negative biopsies performed without missing cancers
Imagio Pivotal Study

- Currently underway at 16 leading institutions in the US
- Enrolment of over 2000 subjects has been completed
- Final results will be forthcoming and require completion of supplemental follow-up visits with Imagio for some subjects
Imagio & Breast Cancer Diagnosis

- Opto-acoustics can display real-time functional information about the metabolism of tumors
- The Imagio system could be used as an additional diagnostic test following mammographic screening
Breast Cancer

- Over 38 million mammograms in USA per year\(^1\)
- 1.7 million breast biopsies in USA per year\(^2\)
 - Over 80% of biopsies performed are negative\(^3\)
- 261,000 cases of breast cancer in USA per year\(^2\)

\(^1\) - FDA MQSA National Statistics, http://www.fda.gov
Diagnostic Imaging

- Initial screening with additional ultrasound and MRI can increase sensitivity but generate more false positives than mammography\(^1\)

- Ultrasound useful for characterizing breast tumors, but has low specificity and causes high percentage of negative biopsies\(^2\)

\[1\] – Berg, W. et. al, JAMA 2012, Volume 307, No. 13
\[2\] - Stavros, A. T., et al., Breast Ultrasound, Lippincott Williams & Wilkins, 2003
Functional Opto-acoustic Imaging
Tumor Metabolism

As compared to normal tissue and benign tumors
- cancers are metabolically more active
- cancers have more blood vessels and more blood
- cancers have irregular branching vessels
- cancers pull more oxygen out of blood and thus de-oxygenate tissues more
- cancers can have hypoxic or necrotic regions of tissue

• Functional opto-acoustics provides information about tumor metabolism
• OA demonstrates this relatively greater de-oxygenation within malignant tissues
• OA demonstrates this increased internal blood within lesions
Imagio™ Breast Imaging System

Functional Contrast
Imagio™ Breast Imaging System

Functional Contrast

deygenated lesion

oxgenated lesion
Invasive Ductal Carcinoma (Malignant)
Invasive Ductal Carcinoma (Malignant)
Fibroadenoma
(benign)
Fibroadenoma
(benign)
Clinical Phase II Trial Feasibility Study

• 155 subjects with solid breast masses imaged with conventional diagnostic ultrasound were scanned with Imagio at two IRB approved sites

• 79 biopsies performed
 – 40 benign
 – 34 malignant
 – 6 excluded

• Images retrospectively interpreted by 5 independent readers blinded to biopsy results
Clinical Phase II Trial Feasibility Study

- readers assigned probability of malignancy (POM) score to each lesion
- POM > 2% is a positive finding
- POM ≤ 2% is a negative finding
- biopsy is used as “gold standard”

<table>
<thead>
<tr>
<th></th>
<th>OA</th>
<th>CDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.237</td>
<td>0.161</td>
</tr>
</tbody>
</table>
OA safer than competitive functional imaging tests

- OA uses no ionizing radiation and no contrast agents, making Imagio completely safe for use on patients
 - PET/CT, PEM and BSGI use ionizing radiation
 - MRI uses a gadolinium contrast agent which can have side effects
Conclusion

• Imagio can display real-time functional information about the metabolism of tumors

• Clinical results from Feasibility Study illustrate that
 – the technology may have the capability to improve overall accuracy of breast tumor diagnosis, monitoring and treatment
 – the potential to reduce the number of biopsies
 – to characterize cancers that were not seen well with conventional ultrasound

• Further study in a large population is being underway at multiple sites
Opto-acoustic Image Fusion Technology for Diagnostic Breast Imaging in a Feasibility Study

SPIE Medical Imaging 2015, Orlando, Florida
February 22, 2015

Jason Zalev¹, Bryan Clingman¹, Don Herzog¹, Tom Miller¹, Michael Ulissey¹, MD, A. Thomas Stavros¹, MD, Philip T. Lavin², PhD, Alexander Oraevsky³, PhD, Kenneth Kist⁴, MD, N. Carol Dornbluth⁴, MD, Pamela Otto⁴, MD

1. Seno Medical Instruments, San Antonio, TX, USA
2. Boston Biostatistics Research Foundation, Framingham MA, USA
3. TomoWave Laboratories, Houston, TX, USA
4. University of Texas Health Science Center, San Antonio, TX, USA